
StructJumper: A Tool to Help Blind Programmers
Navigate and Understand the Structure of Code

Catherine M. Baker, Lauren R. Milne, Richard E. Ladner

 Computer Science & Engineering

 University of Washington

 {cmbaker, milnel2, ladner}@cs.washington.edu

ABSTRACT

It can be difficult for a blind developer to understand and

navigate through a large amount of code quickly, as they

are unable to skim as easily as their sighted counterparts.

To help blind developers overcome this problem, we pre-

sent StructJumper, an Eclipse plugin that creates a hierar-

chical tree based on the nesting structure of a Java class.

The programmer can use the TreeView to get an overview

of the code structure of the class (including all the methods

and control flow statements) and can quickly switch be-

tween the TreeView and the Text Editor to get an idea of

where they are within the nested structure. To evaluate

StructJumper, we had seven blind programmers complete

three tasks with and without our tool. We found that the

users thought they would use StructJumper and there was a

trend that they were faster completing the tasks with

StructJumper.

Author Keywords

Blind Programmers; Screen Reader; Navigation; Accessi-

bility; Code Structure

ACM Classification Keywords

H.5.2 [Information Interface and Presentation]: User

Interfaces

INTRODUCTION

Computer programmers rely on the use of visual aids when

programming [11], especially in an integrated development

environment (IDE) such as Eclipse. These visual aids range

from using different colors for syntax highlighting to using

indentation within the code to indicate scope. The use of

visual aids present difficulties for blind programmers, as

they are unable to quickly access the same information

available to sighted developers. In fact, blind developers

have more difficulties navigating and understanding the

structure of code than their sighted counterparts [6, 9, 11].

Screen readers only allow blind programmers to have ac-

cess to a single line of code at a time. Therefore, to move

around in the code, the programmers are limited to a few

options: using the arrow keys to go through each line of

code, using the outline or package explorer to navigate to a

specific method and then navigating within the method line

by line, or using a search mechanism. Despite these diffi-

culties, the space of accessible developer tools and studying

the practices of blind programmers is still a young field.

Smith et al. created a tool to allow blind programmers to

navigate the hierarchical structure of a program, specifically

the tree structure of files in the Eclipse IDE [9]. Our tool,

StructJumper, expands on this work by creating a hierar-

chical tree of the nesting structure of a program (see Figures

1, 2 and 3) to allow users to both navigate within the pro-

gram and gain an understanding of the structure of code

within the program. We create one tree per Java file, and

the root of each tree is an invisible node corresponding to

the file. A node is a child to another node if the code of the

child node is nested within the code of the parent node.

Inner nodes represent classes, methods or statements, and

leaf nodes are code sections without any changes in nesting.

We include these code sections in the tree, because we want

to allow users to easily switch between coding and finding

where they are in the tree structure, so every line of code

must be contained within a node on the tree.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea

Copyright 2015 ACM 978-1-4503-3145-6/15/04…$15.00

http://dx.doi.org/10.1145/2702123.2702589

Figure 1. Screenshot of StructJumper with source code file

on top and tree of nesting structure on bottom.

StructJumper allows the user to quickly discover in which

nested structure a particular line of code she is working on.

She can do so by pressing a key in TreeView to jump to the

node corresponding to the current location. Moreover, it

allows the user to switch between being able to make edits

within the code and gaining contextual information without

losing her place. We present a prototype of our plugin for

Eclipse for a single programming language (Java) and eval-

uate our tool in a user study with seven blind developers.

We had participants perform a variety of code exploration

tasks both with and without our tool.

With our evaluation, we aim to answer the following re-

search questions:

(1) Does StructJumper make it easier for a blind pro-

grammer to navigate the code?

(2) Does StructJumper make it easier for a blind pro-

grammer to understand where they are within the

code?

To evaluate StructJumper, we had seven blind programmers

complete three tasks related to navigation and answer ques-

tions about the context of a line of code. We found that the

users in the study thought our tool was useful for navigation

and for understanding the structure of code.

Our contributions are:

(1) The StructJumper tool itself, available as a plugin to

Eclipse.

(2) The results from our evaluation of our tool, which

show that StructJumper is useful in helping blind de-

velopers navigate code and gain an understanding of

which statements a line of code is nested within.

(3) Insights into how designers should create similar nav-

igational tools for blind programmers.

BACKGROUND AND RELATED WORK

Practices and Challenges for Blind Programmers

The space of blind developer tools and the investigation of

the blind developer programming practices is still a young

field. Mealin et al. [6] interviewed eight blind developers

and highlighted several practices employed by and chal-

lenges faced by blind developers. They found that despite

issues with integrating screen readers with the complexities

of integrated development environments (IDEs), five of the

eight blind developers had used an IDE such as Eclipse or

Visual Studio. However, the researchers found that blind

developers rarely used and were not aware of the tools

available to them within these complex IDEs [6]. This

could be because it is more difficult for blind developers to

explore the user interface of IDEs or the extra tools are not

accessible. However, it could also be that the added com-

plexity of the environment detracts more than the extra

functionality adds in total usefulness. In our evaluation, the

programmer is aware of the navigation tool and it is acces-

sible, allowing us to explore the benefit provided: the abil-

ity to better understand the structure of the code.

Blind developers also indicated that they often had a diffi-

cult time getting an overview of the code. For example,

skimming the code is not possible due to the linear nature

of the screen reader. They tend to rely more heavily on API

documentation and header files to get an idea of how the

code is structured, although this is not useful if the code is

not well-documented. Blind developers also use the find

function to gain structural information by searching through

common keywords (e.g. public, private, if etc.), which is

often more time-consuming than skimming the code [6].

The researchers noted that none of the blind developers

mentioned using other code navigation tools, such as mov-

ing the cursor back to the last edited text position. It was

unclear whether this was because the developers did not

know about these tools or because they did not find them

useful. Blind developers found it difficult to search through

the code to find variables or methods, especially since it

requires moving the cursor to a specific line in order to

have the screen reader read it aloud. Therefore, they could

not easily alternate between editing the code and finding the

piece of information that they need [6]. Based on the chal-

lenges presented in this paper, we decided to develop a bet-

ter way to navigate through code and made the design

choice to allow the user to switch between her location in

the code and the nested tree structure without moving her

cursor and losing her place.

Audio Based Programming Tools

There has been some prior work on creating accessible

tools for blind developers. Stefik et al. created Sodbeans, a

new programming IDE, which relies on audio cues to con-

vey information such as complier errors or changing the

values of variables while debugging. Sodbeans’ auditory

cues are built on three principles that we will also apply to

the screen reader cues given by StructJumper: 1) they are

short, 2) they are “browsable” (i.e. you can browse through

the cues by only listening to the beginning of each cue), and

3) the important information comes first [12]. Another

group created Audio Programming Language (APL), a new

programming language specifically designed to help teach

people who are blind how to program [8]. Stefik et al. used

Sodbeans at a programming camp for blind high schoolers,

but their evaluation focused on the efficacy of the curricu-

lum and not Sodbeans itself [12]. Similarly, the focus of the

evaluation of APL was on the ability of the student to learn

programming concepts [8]. In contrast, as we evaluate

StructJumper, we are trying to determine the effect of the

nesting level navigation on experienced programmers who

are already well-versed in programming concepts.

Another challenge mentioned by blind developers is using

debugging tools, as most debugging tools do not work well

with screen readers. Stefik et al. integrated an audio debug-

ging tool in the Sodbeans IDE [12]. The same research

group [10] also created a debugging tool for Microsoft’s

Visual Studio IDE, which used sonification (non-speech

audio) to aid developers. In a feasibility study, they found

that blind developers were able to understand the sonifica-

tion cues the majority of the time. Although not designed

specifically for blind developers, Vickers et al. [13] added

auditory cues to debugging tools by mapping the entry, exit

and evaluation of program constructs (if, while, for, etc…)

in Pascal to different musical cues. They found that sighted

people learning programming found this useful to find

bugs. Although the authors found that the audio cues were

useful, they only used a small number of cues to map onto a

small number of constructs. Other work suggests that audi-

tory cues are difficult to understand and learn [7], so it

seems likely that using audio cues would only be useful to

convey short information, but not be useful to convey more

complex information, so we chose not to rely on non-verbal

audio cues for our navigation tool.

There has also been work on navigating through large pro-

jects in a non-visual manner. Smith et al. [9] wrote an

Eclipse plugin to navigate the hierarchal structure of files in

the Eclipse IDE and found that both blind programmers and

sighted programmers who could not see the screen found it

to be useful. We would like to expand on this idea by ex-

tending it to work on structures within the code, specifically

to move between nesting levels.

Stefik et al. explored the use of audio cues to indicate the

lexical scoping relationship between program statements

[11]. These relationships were determined dynamically and

the cues played when a change in scope was detected as the

program executed. We created a similar static tool, which

generates a tree that can be used to navigate through source

code without running the program.

Navigation Aids for Screen Readers

Although there has been minimal research into tools for

blind developers and ensuring that screen readers work well

with IDEs, there have been useful research efforts on navi-

gating web pages and textual documents with screen read-

ers [1, 15]. In early work by Asakawa et al. [1] on develop-

ing an add-on to a screen reader that could read web pages,

the researchers found that navigation was important to the

design of the screen reader. Unlike navigation in IDEs,

many controls allowed users to skip between links or lines

on a page or skip directly to the first or last link.

With current standard screen readers, users can use controls

to switch between header types (e.g. h2 and h3) and then

skip from header to header on web pages. In a 2012 survey

by WebAIM [14], 61% of 1782 respondents reported using

headers as the main form of navigation when trying to find

information on a lengthy web page, as opposed to using the

find feature, navigate using links, landmarks or simply

reading the page. Additionally, 82% of respondents found

having different heading levels either useful or very useful

when navigating a web page. However, in order to allow

users to navigate using this structural information, webpage

creators must provide it. The Web Content Accessibility

Guidelines 2.0 [15] provides guidelines to help developers

create accessible pages. The guidelines require that “Infor-

mation, structure, and relationships conveyed through

presentation can be programmatically determined or are

available in text,” and that “Headings and labels describe

topic or purpose” [15]. Headers are particularly important

for navigation and understanding content on a webpage.

Our plugin works similarly by designating certain parts of

the code as key structural parts of the code (e.g. method and

class declarations, control flow lines, etc.), which serve

similar purposes as the headers on a website. Although

there are tools available that can move between nesting

levels in IDEs today, to the best of our knowledge no one

has studied whether they are useful for navigation by blind

developers, and they do not provide the ability to switch

between navigation while still maintaining the current posi-

tion of the cursor, which is useful for blind developers.

Code Navigation

While there have been many researchers who have looked

into code navigation, many of the techniques would not be

helpful for blind programmers. One of the most common

techniques to help programmers is to make more infor-

mation visible to provide the programmer better context

such as providing a fisheye view of the code [5].

Other researchers have focused on allowing users to rear-

range code in order to help them be able to navigate quicker

[3,4]. While it may be beneficial for blind programmers to

be able to rearrange their code, it does not help with the

problem of navigating within those code sections.

STRUCTJUMPER DESIGN AND IMPLEMENTATION

We created StructJumper, a plugin for Eclipse. We chose to

use Eclipse for a couple of reasons. Eclipse is a mainstream

IDE that is used commonly by both blind and sighted pro-

grammers. As it is common for programmers to work in

groups, having a common IDE is beneficial. Additionally,

Eclipse is open source and has good support for creating

and adding plugins.

For the plugin, we are combining two concepts that have

already been used in software development. This first con-

cept is turning code into a tree structure. This has been done

with Abstract Syntax Trees (AST). We are using a simpli-

fied version of an AST, as we do not want to overwhelm

the programmer with too much information. Grouping code

together at a certain nesting level is not a new concept and

is frequently done by visual cues (e.g. indentation or high-

lighting). We are just adjusting this method to be in a for-

mat accessible to blind programmers.

The plugin creates a hierarchical tree of the code based on

nested structure (Figures 2 and 3). Nodes are broken into

two categories: code sections and statements that precipitate

a change in nesting. Code sections are sequential lines of

code that are all within the same level of nesting. They can

only be a leaf on a tree, not a parent to other nodes. A pro-

cedure call is not included as a separate node in the tree, but

within the containing code section.

The tree is created in a separate window so that a program-

mer can use StructJumper both to navigate as well as to

gain contextual information. This is further enabled by the

key commands (Table 1). One of the major decisions we

made was what should happen when you enter and exit

StructJumper.

On entering, there were two options, (1) update the selected

node to the one that represents the cursor location or (2) to

leave it on the previously selected node. There are good

arguments for either, but based on limitations of the screen

reader, we decided to leave the cursor on the previously

selected node (option 2).

On exiting there were also two options. (1) update the cur-

sor location to that of the selected node or (2) leave it at its

previous location. Work by Mealin [6] shows that being

able to get information (such as a method name) while leav-

ing the cursor in the current location is valuable to pro-

grammers and that many blind programmers create work-

arounds to gain this functionality by using an text buffer.

Therefore, we allowed for both options to be possible with

‘E’ updating the cursor location and ‘Ctrl+F7’ leaving the

cursor in the previous location.

In Eclipse, the Package Explorer window has a similar lay-

out, but only includes class, fields and methods. As we

wanted to make sure that our tool used the same mental

model as all the other parts of Eclipse, we used that model

for our tool as opposed to one similar to Figure 2. While

this was inspiration for the layout and key selection choice,

we made one change in how the arrow keys work. In the

Package Explorer, if a user presses the down arrow key

when the selection was on “TreeParent” (Figure 4) then the

selection moves to “children.” To avoid moving the selec-

tion onto a further nested statement without the programmer

being aware, the programmer has to use the right arrow to

move to a child. If the user presses the down arrow, the

selection would move from “TreeParent” to the next item at

the same nesting level, “ViewContentProvider.”

When the user is in navigation mode, the screen reader

reads relevant and unique cues (such as method names) first

and then provides the rest of the information, so that users

can quickly navigate and skim through code as suggested

by Stefik et al [12]. In order to present the most important

information first, we reordered the presentation of several

lines of code that are in the tree.

For a method, we first present the name, followed by the

input, return type, and then any modifiers or annotations.

For a class declaration, we first present the name, then what

it extends and implements, followed by the modifiers.

public class Calculator {
 private String display;
 public int add(int a, int b) {
 return a+b;

 }
 /**This method subtracts b from a*/
 public int subtract(int a, int b) {
 return a-b;

 }
 public double exponent(int a, int b) {
 double answer = 1.0;
 if(b>=0) {
 for(int i = 0; i<b; i++) {

 answer = answer*a;
 }
 }
 else{
 for(int i = 0; i<b; i++) {

 answer = answer/a;
 }
 }
 return answer;

 }

}

Figure 3. This is the code of a simple calculator class, which

is turned into the tree in Figure 2.

Figure 2. The tree created from the code in Figure 3. Code sections have no further nesting. Note in this image, the first code

section corresponds to the code containing the member variable declared at the beginning of the Calculator class.

When necessary, keywords are inserted to distinguish the

end of one type of item and the start of the other. For in-

stance the keyword “return type” would be added in be-

tween the input and return type to more easily distinguish

the difference. Other lines of code are read as is, as they

already have the important keywords first. For example, the

subtract method in Figure 3 would be read “subtract, Input:

int a, int b, Return type: int Modifiers: public Comments:

/**This method subtracts b from a*/.” The plugin is written

in Java, and currently only parses Java code.

EXPERIMENT DESIGN

To evaluate StructJumper, seven blind programmers com-

pleted three tasks, while using StructJumper and without

the tool. After they had completed the tasks, we asked them

questions about their experience.

Participants

We conducted the study with seven blind programmers, one

of whom was female. Participants were recruited using

emails lists and our contacts. The average age of the partic-

ipants was 24.1 (SD = 4.9). The programmers had an aver-

age of 7.8 years of programming experience (SD = 3.9),

with a minimum experience of 3.5 years. Additionally, the

participants had an average of 2.8 years of experience with

Eclipse (SD = 2.6) and 3.8 years of experience with Java

(SD = 2.8). The minimum experience for Java and Eclipse

was 0.5 years.

Set-Up

The study was conducted remotely, allowing each partici-

pant to use their own computer set-up. The participants

used a variety of screen readers including JAWS, NVDA,

and Window Eyes. By conducting the study remotely, the

participants were able to use the settings in which they are

comfortable, such as talking speed or amount of punctua-

tion to speak. Using the screen sharing abilities of Skype

and Google Hangouts, the researchers were able to watch

and record as the participants completed the tasks and track

their progress.

Procedure

Before the study, the participants were asked to fill out de-

mographic information and install StructJumper. Partici-

pants were not given access to the code until minutes before

we started the study.

The study was divided into three parts, completing a series

of tasks with our tool, completing a series of tasks without

our tool and the post-session interview. There were two

different code bases and each code base had three tasks that

were similar to each other. The participants completed the

tasks on one code base using our tool and one code base

without our tool. The order of the code bases and whether

they used our tool first or second was counterbalanced.

As common advice to improve programming skills is to

read other people’s code, we selected two trending reposito-

ries from GitHub. The code bases were selected as they

each had a long file (600-800 lines of code), which was

well commented, on which navigation would not be a trivial

task. The two repositories chosen were the ZXing
1
 reposi-

tory which scans QR codes and the other was MPAn-

droidChart
2
 which creates charts and graphs for Android

applications. The ZXing file selected is code that searchs

the image for FinderPatterns which are markers in the cor-

ners of QR codes. The MPAndroidChart file is the code that

creates Pie Charts in Android applications.

As the users were unfamiliar with the StructJumper, the

users were first given a short tutorial on how to use the tool.

They were given a description of the tree created and an

overview of the key commands that could be used with the

tool. Then, they could practice using the tool on a toy code

base that did a variety of matrix calculations. Once they felt

1
 https://github.com/zxing/zxing

2
 https://github.com/PhilJay/MPAndroidChart

Figure 4. This is an example of a portion of what the

Package Explorer in Eclipse would show.

Table 1. A table of the keyboard shortcuts that can be

used to navigate in the tree and the code editor.

 Key Action

Ctrl+F7 Switches between tree and editor and

leaves the cursor/selected node at

previous location (Eclipse Built-In

Command)

Left Arrow Go to parent

Right Arrow Go to first child

Up Arrow Go to previous sibling

Down Arrow Go to next sibling

C Go to node representing cursor loca-

tion

T Go to top of the tree

U Update the tree

E Switches to the editor and updates

the cursor location to that of the cur-

rent node

familiar with the tool, they were asked to follow a series of

directions to check if they knew each of the key commands.

Before completing the tasks, users were given a chance to

familiarize themselves with the code. The participants could

spend up to 15 minutes becoming familiar with the code.

Users were given the option to use StructJumper in order to

familiarize themselves as well as their own methods.

Once they were familiar with the code, the participants

completed three tasks. The tasks were selected to get at the

two goals of the tool: improving understanding of nesting

information and improving navigation within code. There

were two navigation tasks, which had non-obvious so that

the users would need to navigate more to determine the

correct answer. There was one context task, which was

nested deeply so that it was possible to either miss a condi-

tion or to add a condition to their answer. The tasks were

similar for each code base. For the StructJumper tasks, par-

ticipants were asked to use the tool, but did not have to use

it exclusively.

Mealin [6] mentioned that search was a technique that some

blind programmers use to navigate in the code. To simulate

exploring code in which you may or may not know key-

words to look for, we phrased the two feature location tasks

different. One of the feature location task’s answer could be

found by using search on the keywords included in the

question (referred to as the With Keywords task). The other

feature location task purposefully did not use keywords that

would allow the answer to be found using search (referred

to as the Without Keywords task). In this way, we can in-

vestigate the differences in the use of StructJumper when

search is effective or is not effective for navigation.

The third task, regarding which conditions were necessary

for a line to execute, involved a deeply nested line of code

(referred to as the Conditions task). In both code bases, the

line was within three if statements or for loops and there

was at least one other if statement on the same level as an if

statement necessary for the line to execute.

The three tasks for the ZXing code were:

1. With Keywords: Find the location in the code

where we skip more than the normal number of

rows of the image in our search for finders patterns

2. Without Keywords: Find the location in the code

where after we have found all the potential finder

patterns, we determine which are most likely the

actual finder patterns

3. Conditions: What are the conditions necessary for

line 463 to execute?

The three tasks for the MPAndroidChart code were:

1. With Keywords: Find the location in the code where

the text for each slice of the pie chart is added

2. Without Keywords: Find the location in the code

where the size of all the chart slices are determined

3. Conditions: What are the conditions necessary for line

300 to execute?

The tasks were timed and the answers were recorded for

later analysis. The task time started when the investigator

had finished reading the questions and ended when the par-

ticipant had stated their answer and stopped looking

through the code.

The answers were evaluated on a 3 point scale. Participants

received 3 points on the feature location tasks if they found

the correct location in the code, 2 points if they found a

similar or related section of code, 1 point if it was loosely

related or similar, and 0 points if it was not at all related or

similar to the correct answer.

For the conditions tasks, the participants were awarded full

points if they correctly identified all the conditions and did

not add any conditions. If any conditions were missing or

erroneously added, a point was subtracted per condition. If

a participant had more than 3 errors, they were just given a

0. It was not possible to get negative points.

Once they had completed the three tasks, the participants

were asked to rate their experience completing the tasks on

a seven point semantically anchored scale. They were

asked:

1. How easy the tasks were to complete: 1 – Very Hard

to 7 – Very Easy

2. How frustrating the tasks were to complete: 1 – Very

Frustrating to 7 – Not at all Frustrating

3. How well they knew where they were in the code

while completing the tasks: 1 – No idea where they

were in the code to 7 – Always knew where they were

in the code

After both sets of tasks had been completed, the participants

were asked to reflect on the differences in their experience

completing the tasks both with and without StructJumper.

Design and Analysis

We used a 2x2 within-subjects factorial design with factors

of the code base and whether or not StructJumper was used.

Each participant completed three tasks for each code base.

We presented the tasks in the same order for each code

base, but the order was counterbalanced for each participant

using a Latin square. Participants completed a total of 6

tasks for a total of 42 tasks completed altogether.

While analyzing completion task completion time, we used

a mixed-effects model analysis of variance with a fixed

effect of Tool, with Participant modeled as a random effect.

For the semantically anchored scale data, we looked at the

descriptive statistics.

RESULTS

To analyze the results, we used task completion times, task

scores, and reported semantically anchored scale values.

We found that participants were faster using StructJumper

and had a better experience while using our tool as they

were less frustrated and were more aware of where they

were in the code.

Task Completion Time

Participants completed all of the tasks in an average time of

3 minutes and 38 seconds. Participants were faster with

StructJumper (mean = 2m 47s, SD = 1m 41s) than without

(mean = 4m 28s, SD = 3m 7s). While Tool did not have a

statistically significant effect on Time, there was a trend in

this direction (F(1,6) = 5.783, p = .053). The largest differ-

ence in time for the tasks came on the conditions task (see

Figure 5) where participants performed faster with

StructJumper (mean = 2m 24s, SD = 1m 16s) than without

(mean = 5m 1s, SD = 4m 34s).

Task Score

The average score for participants was 2.0 (SD = .99).

There was no significant effect of tool on score (F(1,6) =

1.038, n.s.). The average score with StructJumper was 2.2

(SD = .94), and 1.9 (SD = 1.01) without. The largest differ-

ence in task score was on the third task, (Figure 6), where

participants received higher scores using StructJumper

(mean = 2.7, SD = .49) than without (mean = 2.0, SD =

1.15). It is not surprising that participants performed better

on this task, as providing the nesting context was one of the

main goals for StructJumper. When participants did the

completion task without the tool, two participants missed at

least one condition and one participant added an extra con-

dition, and one participant made both of these mistakes.

With StructJumper, only two participants made errors,

where one missed a condition and one added a condition.

On the feature identification tasks of With Keywords and

Without Keywords, many of the participants found related

or similar sections of code. Full credit was achieved on 10

out of the 28 feature identification tasks.

For example, one of the tasks asked the participants to find

the section of code where the code skipped more than the

normal number of rows in the search through the image.

For this task, many participants found sections of code that

determined how many rows of the image to skip instead of

where the actual skip happened.

Another task asked participants to find where the most like-

ly finder patterns were identified from all the potential find-

er patterns that were found. One participant found a section

of code that identified if a single section of the image is

likely a finder pattern.

Participants may have found related sections of code as

opposed to the correct answer because our tasks purposeful-

ly contained as little information about the correct code

section as possible. We made this decision in attempt to

mimic a real life situation where the programmer is search-

ing for a certain feature or action in a newer or unfamiliar

code base. This choice may have added difficulty for users

to locate the correct section of code, and thus caused users

to find a section that is similar or related.

Participant Experience

We gathered insights on participant experience by asking

three semantically anchored scale questions after each set of

three tasks. We asked about how easy they found the tasks

to complete, how frustrated they felt completing the tasks

and how well they knew where they were in the code.

For how easy they found the tasks to complete, there was

no difference in the average. The average score was 4.1 for

both. However, the standard deviation was larger with the

tool, than without the tool (SD = .83 vs. SD = 1.64).

When asked about their frustration when completing the

tasks, the average was higher with the tool. For this seman-

tically anchored scale, a higher number was less frustrating.

The average was 4.3 without the tool (SD = 1.67) and 5.0

with the tool (SD = 1.4).

The largest difference however, was when the participants

were asked about how well they knew where they were in

the code (see Figure 7). The average was higher with the

tool on this question as well. Once again, a higher number

Figure 5. This chart shows the average completion time

that it took participants to complete the three tasks bro-

ken down by type. The bars represent the standard error.

Figure 6. This chart shows the average score for all par-

ticipants on the three tasks broken down by task. The

bars represent the standard error.

is better as it meant they knew more often where they were

in the code (1 was they never knew where they were and 7

was they always knew where they were). The average with-

out the tool was 4.1 (SD = 1.12) and the average with the

tool was 5.6 (SD = 1.40).

One thing that stood out about the responses for the ques-

tion about how well they knew where they were in the code

was the number of people who felt like they always knew

where they were (response of 7) or almost always knew

where they were (response of 6). Without the tool, nobody

indicated they always knew where they were and only one

person indicated that almost always knew where they were.

Conversely, with the tool, two people always knew where

they were and another three people almost always knew

where they were.

QUALITATIVE RESULTS

After they had completed the sets of tasks with and without

StructJumper, the participants were asked to reflect on

completing the tasks themselves, their ability to complete

the tasks, their knowledge of where they were in the code,

and their understanding the code. Participants were asked if

they would use StructJumper, and if so, for what types of

tasks. Five of the participants indicated that they would use

the tool.

To analyze the qualitative results, we looked at the inter-

views for concrete examples provided by the participants on

how StructJumper changed the experience of completing

the tasks and for examples on how the participants indicat-

ed that they would use the tool. Themes that were brought

up by multiple participants were included in the results.

Quicker and Easier

As found in our results, there was a trend that StructJumper

may have reduced the task completion time. In fact, six

participants said that felt that they were able to navigate

through the code faster and easier:

It’s much easier than reading code. It’s far more efficient

because I’m reading relevant information. I don’t have to

read the complete code.

They mentioned that they were able to find the relevant

information from the tool and skip between methods. When

they were deep within a method, they were able to get in-

formation about where they were more quickly than without

StructJumper.

Better Understanding of the Layout

Six participants indicated that the tool helped them with

their understanding of how the code was laid out and how

the statements were related to each other. Participants also

felt that it helped them get a broad overview of the code.

This was particularly seen in the conditions task. As one

participant was asked to complete the conditions task with-

out StructJumper, they said:

I don’t know how to see that in Eclipse. For that matter, in

fact, I don’t know how to see it in any of the IDEs I’ve

worked in. Short of reading the code using brute force.

Another participant mentioned as they started the condi-

tions task that this was one case where they would definite-

ly want to use the tool as it made it a lot easier. This was

also a common type of task that participants mentioned in

the interviews that that the tool would be helpful for.

Participants also indicated that StructJumper was useful for

gaining a broad understanding of the code. One participant

indicated that they would be likely to use this to skim the

code a few times before reading the code line by line when

first introduced to a large, new code base.

Lack of Cues

Two participants mentioned that StructJumper was helpful

when there is a lack of cues to indicate how far a statement

is nested in the code. There were two cases of this men-

tioned by participants.

For instance, one participant mentioned Python. The partic-

ipant mentioned that in languages like Java, there are cues,

such as curly braces, to indicate the start and end of a nest-

ing level. These cues make knowing how far nesting a

statement is possible. Without these cues, the participant

indicated that it is much harder to know where the state-

ment was. Therefore, expanding this concept to a language

like Python could potentially have a large impact on a blind

programmer.

Another participant indicated a similar sentiment about the

lack of cues. In order to have the screen reader speak cues

such as the braces, the settings of the screen reader need to

be set to speak all the punctuation. However, the participant

said:

I really hate changing the punctuation verbosity of my

JAWS, on my screen reader, to most or all. So it’s always

set at none. So I don’t even know braces and stuff like that.

Figure 7. This chart show the average score for the partic-

ipants for the semantically anchored questions. A higher

value is better for all three questions. The bars represent

the standard error.

And it’s just that since I read through the code so many

times and I understand it so well that I can figure out, ok

well here has to be a brace or here is where the indentation

changes. So I never use a feature ever to actually notify me.

It’s really annoying. So that one thing that this tool really

helps with. I know, ok, well this condition, it’s within the

other condition, within that loop. So it kind of helps that

way.

As participants were completing the tasks, we saw some

change the verbosity of the punctuation level as they were

completing the tasks as they may only use that level of

punctuation verbosity for programming and it may be the

case that others would prefer not to have to have the screen

reader read all the punctuation all the time.

Change in Focus

One of the prompts we asked the participants to reflect on

was whether or not the tool affected their ability to under-

stand the code. A few brought up that it removed the num-

ber of things that they would have to focus on as they were

going through the code, which may make it easier to under-

stand. For example, some participants mentioned that it

allowed them to focus less on the little details of how to

navigate or keep track of where they are in the code. One

participant said:

You know, the navigation part, you know, without it, I was

more focusing on that probably. How do I navigate, how do

I get to the next thing, what keywords can I use to easily

jump to where it needs to go? So, you know, without having

to do that, you know, maybe I was focusing more on under-

standing what the code actually does.

Another participant indicated that they would use the tool

when they were trying to understand the code. They said

that it was useful when:

Trying to keep track of what level you’re on basically… If

I’m reading through code and trying to remember how

many right braces you have remaining, how the different

conditionals are related to each other.

It allowed them to see the relationship between blocks of

code more easily. For instance, one participant indicated

that is made it easier for them to know which conditionals a

statement in the code it was nested under.

Unfamiliar Code

Multiple participants indicated that this tool would be more

helpful for unfamiliar code than for code they know well.

Many indicated that this was because, for code in which

they are familiar, they already know the keywords they can

use to jump to a section of code or what statements are un-

der which conditionals. StructJumper aims to help provide

this information, so it helps them learn when they first see a

code base.

In familiar code, the biggest benefit this tool may add is the

ability to navigate more quickly to that line, as mentioned

by one participant. The tool can be used to skip lines and

the user can quickly skip through code as they know each

where the section is nested. This could be better than a

keyword search as frequently the keywords may not be

unique to that section of code only, and far better than mov-

ing through code line by line.

Programming Use

There were some participants who mentioned use cases for

the tool that were more related to coding and finding errors

in code. Some participants mentioned that this might be

good at finding errors such as improperly matched braces.

Another area that a participant suggested it might be useful

to use it to skim over the logic for errors, such as looking at

what the switch cases are to determine why the correct case

is not getting called.

One participant mentioned that in his work, he might re-

ceive feedback from customers about the functionality of

the application. He could then use the tool to navigate to a

section of code where the functionality in question is and

then fix the problem or make the requested change.

The researchers are interested in investigating the use of

this tool for programming by conducting follow-up studies.

DISCUSSION

We believe the lack of significant effect of the tool on time

comes from some variation in the participants. For 8 of the

21 tasks, participants were slower with our tool than with-

out. Of the 8 slower tasks, 2 were on Conditions tasks, 3

were on the With Keywords task and 3 were on the Without

Keywords tasks.

We attribute this variation to a variety of reasons. In one

case, the participants only found one of the conditions

without the tool and with the tool found all three and spent

more time double-checking them. Two of the participants

that were slower on some tasks with the tool did not use

anything like the package explorer or outline. They were

efficient with a line-by-line navigation approach. All but

one other of the participants used either the package explor-

er or the outline and may be more accustomed to using a

similar tool.

For some participants, it was not clear what made them

slower with the tool than without the tool. It may be that

they were more efficient with their current method. It could

also be that they just found the navigation task that they

received while using the tool more difficult.

One of the limitations of this work is that it only looks at

navigation within unfamiliar code. As programmers will

spend much of their time navigating through code that they

have been working on and is familiar to them, this study

does not look at one of the main use cases. We cannot know

if the benefits we saw in this study will carry over to navi-

gation in familiar code.

FUTURE WORK

The evaluation of StructJumper focused only on naviga-

tional tasks as that is its main purpose, but it would be in-

teresting to learn how participants use this tool to perform

different coding tasks as well. Some participants mentioned

its use in debugging to try and find logical errors as well as

navigation to find problem sections of code. In addition, the

researchers could learn by having StructJumper used in the

wild. This would allow us to look at how its use might

change with familiar programs versus unfamiliar programs.

Additionally, it would be interesting to research whether

this tool is beneficial to sighted programmers and investi-

gate how their use of the tool varies from blind program-

mers. Much of the benefit of the tool is overcoming the

difficulties that screen readers have in jumping many lines

of code, which can be done more easily with sight and visu-

al clues like indentation. However, there may be benefits

for sighted programmers to only look at the included lines

of code and ignore other code sections as they are collapsed

on the tree.

CONCLUSION

We created StructJumper, an Eclipse plugin that allows

blind programmers to quickly navigate through the code

and see the how specific statements are nested within the

code. We ran a user study with seven blind programmers

and found that there is a trend that the tool has an effect on

the time it took users to complete the tasks.

We also found that participants were positive about the tool

and that they would be interested in continuing to use the

tool. The participants found it quicker to navigate through

the code and, thought that StructJumper provided valuable

information about the conditionals that apply to a line of

code.

ACKNOWLEDGMENTS

This material is based upon work supported by the NSF

Graduate Research Fellowship under Grant Nos. DGE-

0718124 and DGE-1256082 and NSF grant IIS-1116051.

REFERENCES

[1] Asakawa, C. and Itoh, T. 1998. User interface of a

Home Page Reader. In Proc. of ACM conference on

Assistive technologies Assets '98. ACM, New York,

NY, USA, 149-156.

[2] Austin, J. 2013. Want a Great Scientific Career?

Choose Computer Science. From

http://sciencecareers.sciencemag.org/career_magazine/

previous_issues/articles/2013_03_25/caredit.a1300053.

[3] Bragdon, A., Zeleznik, R., Reiss, S.P., Karumuri, S.,

Cheung, W., Kaplan, J., Coleman, C., Adeputra, F. and

LaViola, J.J. Jr.. 2010. Code bubbles: a working set-

based interface for code understanding and

maintenance. In Proceedings of CHI '10. ACM, New

York, NY, USA, (April 2010), 2503-2512.

[4] Henley, A.Z. and Fleming, S.D. 2014. The patchworks

code editor: toward faster navigation with less code

arranging and fewer navigation mistakes. In Proc. of

CHI ‘14. ACM, (April 2014), 2511-2520.

[5] Jakobsen, M.R. and Hornbaek, K. 2006. Evaluating a

Fisheye View of Source Code. In Proc. CHI ’06, ACM

Press, (April 2006), 377-386.

[6] Mealin, S., Murphy-Hill, E. 2012. An exploratory

study of blind software developers. Visual Languages

and Human-Centric Computing (VL/HCC), 2012 IEEE

Symposium on. IEEE, (September 2012), 71-74.

[7] Palladino, D. and Walker, B. 2007. Learning rates for

auditory menus enhanced with spearcons versus

earcons. In Proc. of International Conference on

Auditory Display (Montreal, Canada June 26-29, 2007)

ICAD ‘07.

[8] Sánchez, J., Aguayo, F. 2005. Blind learners

programming through audio. In CHI'05 extended

abstracts on Human factors in computing systems,

ACM, (April 2005), 1769-1772.

[9] Smith, A., Cook, J., Francioni, J., Hossain, A., Anwar,

M., and Rahman, M. 2003. Nonvisual tool for

navigating hierarchical structures. In SIGACCESS

Access. Comput.77-78 (September 2003), 133-139.

[10] Stefik, A., Alexander, R., Patterson, and Brown, J.

2007. WAD: A Feasibility study using the Wicked

Audio Debugger. In Proceedings of the 15th IEEE

International Conference on Program Comprehension

(ICPC '07). IEEE Computer Society, Washington, DC,

USA, 69-80.

[11] Stefik, A., Hundhausen, C., and Patterson, R. 2011. An

empirical investigation into the design of auditory cues

to enhance computer program comprehension. In

International Journal of Human-Computer Studies, 69

12, (December 2011), 820-838.

[12] Stefik, A., Hundhausen, C., and Smith, D. 2011. On the

design of an educational infrastructure for the blind and

visually impaired in computer science. In Proceedings

of the 42nd ACM technical symposium on Computer

science education, ACM, (March 2011), 571-576.

[13] Vickers, P. and Alty, J. 2002 When Bugs Sing. In

Interacting with Computers, 14 (6). 793-819. ISSN

0953-5438

[14] WebAIM, 2012. Screen Reader User Survey #4

Results. From

http://webaim.org/projects/screenreadersurvey4/.

[15] W3C, 2008. Web Content Accessibility Guidelines

(WCAG) 2.0, From http://www.w3.org/TR/WCAG20/

